
LIBRARY
H MIMICAL RfT^ORT CECTIOfJ

HOOL
MONTLREV. C

NPS-57Zi750 1H-

NAVAL POSTGRADUATE SCHOOL
" Monterey, California

AN EXACT SOLUTION TO THE TRANSONIC EQUATION

by

OSCAR BIBLARZ

APRIL 1975

Approved for public release; distribution unlimited

FEDDOCS
D 208.14/2:NPS-57Zi75041



NAVAL POSTGRADUATE SCHOOL

Monterey, California

Rear Admiral I. W. Linder, USN Jack Borsting

Superintendent Provost

The transonic equation represents an important problem in Gas

Dynamics

.

This work is relevant to AE 30*4-3 and to research efforts in transonic

flow.

Reproduction of all or part of this report is authorized.

This report was prepared by:



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER
W

nps-57zi75o;li

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

AN EXACT SOLUTION TO THE TRANSONIC EQUATION
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORO) 8. CONTRACT OR GRANT NUMBERfaJ

OSCAR BIBLARZ

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NAVAL POSTGRADUATE SCHOOL

MDNTEREY, CA 939^0

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

NAVAL POSTGRADUATE SCHOOL
M3NTEREY, CA 939^0

12. REPORT DATE

April 1975
13. NUMBER OF PAGES

2k
U. MONITORING AGENCY NAME 4 ADDRESSf'/ different from Controlling Office) 15. SECURITY CLASS, (of thla report)

UNCLASSIFIED

15«. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide If neceaaary and Identify by block number)

20. ABSTRACT (Continue on reverae aide It neceaaary and Identify by block number)

The small disturbance equation of transonic flow is solved by a separa-
tion of variables technique. The resulting ordinary, nonlinear differential
equations are studied in the phase plane where the general solution represents
the behavior of the perturbation velocities. In the phase plane, the character
of transonic flow is evident. An asymptotic explicit solution is given which
encompasses the sonic flow solution. Numerical integration results for the

implicit equations are presented and two flows are examined which are intrinsi
to the form of the solution.

3
dd ,:

Fr73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

|

ii

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)





TABLE OF CONTENTS

I. INTRODUCTION - 1

II. SEPARATION OF VARIABLES 2

III. PHASE PLANE k

IV. IMPLICIT SOLUTIONS 11

V. INTRINSIC FLOWS -- lk

VI. CONCLUSIONS - 21

VII. ACKNOWLEDGEMENTS -- 21

VIII. REFERENCES 22

LIST OF FIGURES

FIGURE 1. PHASE PLANE REPRESENTATION 5

FIGURE 2. PERTURBATION VELOCITIES IN PHASE PLANE 7

FIGURE 3. Q-Y TRAJECTORIES, y INCREASING - - 9

FIGURE h. P-X TRAJECTORIES, x INCREASING 10

FIGURE 5. NUMERICAL INTEGRATION OF EQUATION 33 15

FIGURE 6. NUMERICAL INTEGRATION OF EQUATION 3b, Q^O - l6

FIGURE 7. INTRINSIC FLOW, SUBSONIC INITIALLY 19

FIGURE 8. INTRINSIC FLOW, SUPERSONIC INITIALLY REGION I 20

in





I. INTRODUCTION

With much renewed interest in transonic flow, the limitations of

present methods of analysis become evident. The hodograph transformation

can be useful only for flows past a small class of airfoils; numerical

methods are powerful but lack some generality. It is, therefore, worth-

while to examine anew the possibility and suitability of exact solutions

to the two-dimensional, small disturbance potential equation of transonic

flow. This equation retains one non-linear term which is essential for

non-divergent solutions at Mach one, but the non-linear partial differen-

tial equation has proven to be difficult to solve. This inherent difficulty,

coupled with the presence of shocks in the flow which cause boundary layer

separation, has resulted in the creation of many approximate methods of

solution which are employed in the design of transonic airfoils and the

like.

Some exact solutions are available for the transonic equation which
o

are not obtained through the hodograph method. Mayer obtained a solution

for the flow in a deLaval nozzle in the form of a series expansion;

Goertler and Guderley^ report on an exact solution to the "parallel sonic

jet." Exact solutions are limited either by boundary conditions as in

the hodograph method or by the inherent approximations of the transonic

equation. These solutions, however, can be very useful in checking

results from approximations to the equation and do represent a practical

class of geometries in their own right.

In this paper an exact solution is presented which satisfies the full

form of the transonic flow equation and involves 5 parameters. This solu-

tion has been obtained through a separation of variables which is appro-

priate to a re -arranged form of the original equation. These results can

be studied in the phase plane where significant features of the transonic

equation are evident. The implicit form of the solution can be given an

explicit asymptotic form which is both simple and useful. The separated

solutions can be manipulated to generate transonic, shockless flows.



II. SEPARATION OF VARIABLES

. 3
The transonic equation in two dimensions is

where

d-^)^ + Cp^ = ^ (V+1^^ (i)

u , v
cp = tt— and cp = 77-
^x Uqo ^y U

u and v are the perturbation velocities corresponding to the x and y axis

respectively, and Ma is the Mach number of the unperturbed flow at Uqo

moving in the positive x direction. The coordinates are dimensionless.

Equation 1 can be separated with

$(x,y) = X(x)Y(y) + (l-^)x (2)

where

$(x,y) = l£ (l+v>p (3)

the resulting form is

l^L = II = . x
(\>o)

X
Y
2 X

where \ is a separation constant the sign of which is chosen so that Y

remains finite as y goes to infinity. In the subsonic wavy wall solution

it is shown that the separation constant is related to the "wavelength" of

the sinusoidal wall. We arrive then at two ordinary, nonlinear equations

X'X" + \X = (Ua)

Y" + \Y
2

= (k\>)

To obtain the X(x) solution, let P(x) = X'; integrating once we obtain

3

p(x) = V- |xx'
r2



where o is a constant of integration. Now, integrating again we get

x = x +
dZ

o ^

(6)

which is an implicit form for the solution. The Y(y) solution follows in

a similar fashion; letting Q(y) = Y 1 we arrive at

Q(y) = +\/ - f\Y
3
+p (7)

where |3 is an integration constant. Upon integrating again the result is

Y
-3T.T

(8)y = yG ±
J

dW

o r 3 —

which represents the implicit solution for Y(y).

We shall study next the separated solutions in the phase plane

"before further considerations of the above integrals are given.



III. PHASE PLANE

Since the independent variable does not appear in Eqs. 4a and kh,
h 5

then the analysis in the phase plane is appropriate '
. Using the previous

definitions for P and Q we can rewrite Eqs. 5 and 7 as

|p
3

+ |XX
2

= + a/3 (9)

and |q
2

+
|X

Y3 = + p/2 (10

)

Provided that neither a nor £ are zero, it is useful at this point

to divide Eqs. 9 and 10 by a and p respectively. What results is an

equation of the form

a
3 + b

2
= + 1 (11)

P 21 1/3
where a = -^ or (| |) Y (12)

3 ^
X/2

and b =
(| ^) X or ^2

(13

)

It is a simple matter to plot Eq. 11 on the phase plane and this is

shown in Fig. 1. In this figure, we have also shown the corresponding

curves for a circle ( a degenerate ellipse), and for a hyperbola. Since

both the ellipse and the hyperbola represent solutions to linear equations,

the non-linear character of the present solution is evident in Fig. 1.

In order to further explore the features of the phase plane, let us

return to the velocity potential; from Eq. 2,

» = X'Y + (1-M
2
,) (Ik)

and $
y

= XY' (15)

where cp =
p

and cp = ^
UooM^U+y) y tUC(l4V )
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FIGUEE 1. PHASE PLANE REPRESENTATION
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Rearranging Eqs. lU and 15

X'Y = £x
- (l-M^) (16)

XT = cp

y
(17)

Clearly, a phase plane representation of X' (or P) vs X corresponds to

plotting [cp - (l-M;] vs cp with a constant y coordinate. What is equally

significant is that the same figure results if we plot Y vs Y 1 (or Q) along

a constant x coordinate. The above inference can be seen from Eqs. 11-13.

Figure 2 shows the phase plane in cp and cp ; Z signifies either Y or X'

and W signifies either Y' or X depending on which coordinate is being held

constant. The character of Fig. 2 is useful because our inquiries as to

equilibrium and stability points in the phase plane will have direct

physical significance. We shall also find that trajectories will be of

some interest.

It can be seen in Fig. 2 that, except for M^ = 1, the curves do not

go through the origin. Since we know that there must exist a region for

which no velocity perturbations exist (i.e. cp = to = 0), it is clear that

intercepts in the ordinate are proportional to 1-M^, • That is, the upper

curve must correspond to an initially supersonic flow (l-M» <0) and the

lower curve to an initially subsonic flow; the axis is the no perturbation

point. Although shocks are not necessarily normal but must satisfy the tran-

sonic shock polar, the above argument is consistent with normal shocks near

Mach one where

M^-l = 1-M^ (18)

holds between supersonic (subscript 1) and subsonic Mach numbers. Clearly,

without perturbations, a flow may shock and this corresponds to a trajectory

along the ordinate between the upper and lower curves.

At this point we are ready to interpret en and f3 since their sign

governs the choice of curve in the phase plane. It follows that

+ a = C
x

(M^-l) (19)

and + = C
2

(mI-1) (20)
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FIGURE 2. PERTURBATION VELOCITIES IN PHASE PLANE



where C, and C are constants. The form of Eqs. 19 and 20 can be shown

to he consistent with the von Karman's transonic similarity rule as

given hy Spreiter (where for a fixed value of x and y, X'Y must be

a function of (l-iyQ), see Section V).

Using phase -plane arguments* it follows that the origin in Fig. 2 is an

equilibrium point for M^l. This means that, at least for two dimensions,

such a flow cannot develop any perturbations since for P and X equal to

zero there is no way the curves may leave the origin.

It is instructive to look at the trajectories in the P-X plane and

Q-Y plane separately. The latter are shown in Fig. 3. The arrows indi-

cate the direction of increasing y. The origin is an equilibrium point

(Q'=0 and Y'=0) which implies that the only "stable" trajectory is that

for M^l. Q = corresponds to an'asymptote: because y_oo as Q-0 from above

and y-*-oo as Q-.0 from below; however, Q always decreases for increasing y.

The P-X trajectories are more complicated as shown in Fig. h. The

trajectories for P>0 and BcO are opposite implying that the P=0 intercepts

are "singular"points; note, however, that these are points at x=+«>. The

subsonic side (lower curve) can be traversed without difficulty but the

supersonic side shows problems in going from region I (P<0) to region II

(P>0) and viceversa. This difficulty will be easily understood in Section

IV where curves are shown in the coordinate plane.

The P-X plane shows trajectories which may elucidate transonic shock

behavior. In Fig. 2 the perturbation velocities are indicated for the motion

represented by Fig. k (i.e. with x increasing) and for Q > 0. A supersonic

flow would start at the ordinate intercept of the upper curve (cp = cp =0)

and move to the right whereas an originally subsonic flow would begin at the

lower intercept and move to the left. A variety of flows are possible depend-

ing on the choice of the free parameters involved; however, the choice is re-

stricted to region II for initially supersonic flow until we introduce transonic

*The equation in X(x) must be modified as follows

let R -
I

(X')
2

then X* =V2R" and R* = - \X

8
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FIGURE 3- Q-Y TRAJECTORIES, y INCREASING

9



FIGURE U. P-X TRAJECTORIES, x INCREASING
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shocks. The discussion of a subsonic flow which goes through a local

supersonic zone within the airfoil appears to be more complicated and will

not be attempted here. The important question as to whether or not shocks

can be avoided in transonic flow remains, to be shown with the phase plane analysis

IV. IMPLICIT SOLUTIONS

In order to present further discussion of the implicit solutions,

we note that for appropriately large values of X and Y the following

simplifications take place:

p( X ) Jrrgfc . . (i^/y/3 x>(
|)i/2

and Q(y)=Vq^. (|x)
V2y3/2 Y<-(|)^

where only positive values of Q have been chosen.

This is, of course, evident from Figs. 1-k where it can be seen

that the subsonic and supersonic branches approach a common asymptote so

that at sufficiently high values there is no distinction between the sub-

sonic and supersonic regimes within transonic flow. The approximation,

furthermore, represents the exact solution for M^l.

Under the above conditions, the integrals represented by Eqs. 6 and

8 become

X = - ^ x3 (21)

and Y = - | (y-Y
)"2 (22)

(Note that Y = -°°aty = y, whereas X=£> at x=0)

Therefore, from Eq. 2,

*(x,y) = i X
+ (l-j£)x (23)

where, \, the separation constant related to a geometry input has dropped

out. The limit represented by Eqs. 21 and 22 is suggestive of supersonic

flow at regions away from the body surface. Consider the perturbation velo-

cities,
2

(y-y )

li



and ¥ = - | —5-, (2 5 )

(y-y
Q )

If we "force" the characterics for supersonic flow on these results,

we find that, using x = + (M^-l) 2 (y-y ), Eqs. 2k and 25 become

*x
= (26)

cp

y
= f | (M^-l) 3/2 (27)

It is interesting to compare these results with a Prandtl-Meyer

expansion for values close to the sonic line. The first non-zero term

of the angle v (which changes M=l to M^l) is , using a series expansion
_1

for the tan ,

... g ofof ,

3

but from Eqs. 26, 27, and 3

;y+d
•** (28)

v^tanv= rIr = |i^4! (29)

The comparison is good since M,,, must be close to 1. If M^ is exactly one,

then we know that v = 0; the sonic solution is simply

^(x,y)=i^—

g

(30)

It is evident that if x is zero cp , cp and cp will all be zero which
x' xx ' yy

corresponds to the trivial solution to the transonic equation. This is

the equilibrium point alluded to in the previous Section.

2
The parallel sonic jet solution of Goertler and Guderley is comprised

of Eqs. 8 and 21, but note that sign of \ as chosen by these authors is

opposite that used in this work. The result is to make their Y(y) go to

infinity at some finite y, and this appears to be inconsistent with the

12



character of unbounded flow. As will be shown at the end of this Section,

our Y(y) has an upper limit as y goes to infinity. It is possible,

however, to obtain Eq. 30 from the Goertler and Guderley solution.

Before proceeding to depict the entire range of the integrals given

by Eqs. 6 and 8, it is worthwhile to examine their behavior near X=0 and

Y=0. We have, using Eqs. 19 and 20 as well,

P ^ + «V3 . C V3 (M2.1}
1/3

(3D

which says that the slope of X near the origin is constant, positive for

supersonic flow and negative for subsonic flow. In the y direction we

have

+Q=pl/2
= C^/2

(H^-l)
1/2

(32)

which implies that only the supersonic flow solution crosses the abscissa

and with a positive, constant slope. Because of the third power on Y,

the straight line portion of it will be conspicuous.

If we now write Eqs. 6 and 8 for M^l as

X

1 J1L-t
2 \'* V6 f

z
2
ii

y-y, - + (^ V1/6
/o - "2\

Sf dW

J~ ^ W3±l

and define

? 3 x a-V6
(
3A)

l/2

( ,2

1/3
(y-y ) = (y-y

c ) P
l/6

(^) (36)

13



then we can plot X vs x and Y vs (y-y ). This is shown in Figs. 5 and 6.

These results were obtained by numerical integration of the equations.

In Figure 5> "the axis was chosen as the point of symmetry since the curves

go to infinity. It is clear that the supersonic solutions of region I

cannot pass into region II (except at +m ) as implied by the phase plane

plot, Fig. h. The subsonic solution has no discontinuities. For values

of X greater than + 10, the form of Eq. 21 well represents the curves

within three significant figures. In Fig. 6 we have plotted only the

curves for Q-^0; the curves for Q<0 would correspond to a reflection of the

shown curves about the ordinate. Since Q, always decreases with increasing

y, crossing the abscissa in Fig. 3 requires a trajectory going through

infinity. It is clear in Fig. 6 that only the supersonic solution crosses

the y-axis (at y-y = + 2.8) and that it is asymptotic to Y=1.0; similarly

the subsonic solution is asymptotic to Y=-1.0. For values of Y less than

-5 the curves are well represented by Eq. 22. With knowledge of X(x) and

Y(y), P and Q can be found from Eqs. 5 and 7 respectively.

V. INTRINSIC FLOWS

The solutions which arise from separation of variables in the transonic

equation generate three flows which we shall call intrinsic. The reasoning

will be evident in the arguments shown below. Eqs. 33 and 3^ may be written

as (MB /l)

a = «
(37 )

and dy =
^

(38)

V-Y3ii

Now at the body surface y = f (x) or

\ = g (X) (39)

Let us define the intrinsic flows as ones for which

Y
b
J = -X ±1 (UO)

It is not difficult to show that as a result of Eq. 1+0, taking derivatives,

i
d5
b s a5T

4-Y^ " " 3
[-5

2
± l]

2 ' 3

lit
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FIGURE 5- NUMERICAL INTEGRATION OF EQUATION 33
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Introducting Eqs. 37 and 38j the above becomes

S- 2 J- (U2)

Since, according to Figs 1+ and 5, there are three distinct curves (one

subsonic and two supersonic) we would anticipate that Eq. k2 represents

three flows. Before going to a numerical integration, let us see what

Eq. k2 yields for both the X > 1 and X < 1 limits. We have

y = constant - 6/x for X> 1 (1+3)

and y =

2 r* ^
- -r- x, X < 1 supersonic (kka.)

+ y x, X < 1 subsonic (¥+b)

Now the pressure coefficient in two-dimensional flow at the surface can
3

be found as follows

* fPcru oD

But, according to Eqs 3 and lU
2[X'YV + (1-M„)]

C = » " (1*6)
p M

oo 5 + Y)

It can further be shown that

x'Y
b

- [ -I2
ilf/3 (^/3) (||)

1/3
(k7 )

where (oB)
1^3 = (C,C )

l/3
(M

2
-l)

2 /3
(1+8)

J. £ oo

So that C becomes
P

c

. rfedP&T ,"-
2
'1,2 '3[ -i2t lfn

"1-- 2
' ' ""

Eq. U9 shows the dependance of C on (l-M
ffi

) explicitly. We next define
p «w

- c mJ(i-hy) «(i-ui) „„ ,,«

PJ
where C is the part of the pressure coefficient which varies with the

ir

coordinate of the surface.

17



Of the three possible flows, only two turn out to be reasonable, namely

the one corresponding to M
qo
< 1 and that for M > 1, region I. These flows

are shown in Figs 7 and 8 where y and C are plotted as a function of x.

The initially subsonic flow represented in Fig. 7 corresponds to a concave

shape connected to a convex one through a straight section; there is no

stagnation point. The curvature of C reflects the concave-convex features
p

of the surface. The maximum value of C is minus one at x = 0. We note
P

that, since Moo< 1, the conventional C will always be negative unless \

itself is not as previously defined. The initially supersonic flow shown

in Fig. 8 is to be interpreted as flow in the minus x and minus y directions

(i.e., to the left and down). Here the shape is all concave and we expect

few differences between this flow and the previous one. C , for example,

goes to zero at x = where one would anticipate noticeable differences as

evidenced in Fig. 5. These results will, of course, break down at some y

where the small perturbation assumptions begin to be exceeded. These two

flows emerge in a straightforward way from the form of the separated

solutions and should become part of the important class of transonic flows.

18
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VI. CONCLUSIONS

The ultility of the exact solution shown in this paper is associated

with cases where the "boundary conditions are compatible with the separa-

tion of variables scheme. This is particularly significant on the body

surface (the so-called tangency condition); a family of flows which is

intrinsic to the form of the solutions has been discussed. At.

infinity, the perturbation must be finite or zero and the fact that Y(y)

is bounded as y-*oo means that this boundary condition may be handled as

well. Of course, there is a class of internal flow problems for which

our solution may also apply.

Since the phase plot may be interpreted in terms of the perturbation

velocities <P and cp , we have before us a fundamental tool for studying

the general properties of the transonic equation. Paths of constant x or

y coordinate are easy to see in practise and one can find trajectories

for which the perturbation velocities will remain constant. The allowed

trajectories with increasing x promise to be particularly useful in un-

covering the behavior of shocks in transonic flow. Moreover, the conclu-

sions from the phase plane that govern sonic flow point out some rather

fundamental behavior of two-dimensional flow, namely, that sonic flow is

an equilibrium point.

The asymptotic solution to the velocity potential has been identified

with sonic flow and with a very weak Prandtl-Meyer expansion. Certainly,

the simplicity of the mathematical form of this result makes it worthy

of further study.

The numerical integration results given have aided in explaining

some of the features of the given solutions . The characteristics of the

flows presented will hopefully have an impact on practical designs.

VI I
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